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Onsager-Casimir Reciprocity Relations for 
a Mixture of Rarefied Gases Interacting with 
a Laser Radiation 
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The behavior of a mixture of optically excitable and inactive gases in the field 
of a laser radiation is considered from the viewpoint of nonequilibrium thermo- 
dynamics. The kinetic coefficients satisfying the Onsager-Casimir reciprocity 
relations are found from general properties of the Boltzmann equation, boundary 
condition, and terms describing the gas-radiation interaction. Various kinetic 
phenomena induced by the laser radiation are coupled with corresponding cross 
effects. 
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1. INTRODUCTION 

If an optical ly excitable gas having a t ransi t ion frequency co o interacts with 
a laser rad ia t ion  having a frequency co close to 090 the Bennett  d ip  in the 
dis t r ibut ion function of the ground  state and the cor responding  peak in 
the dis t r ibut ion function of  the excited state appear .  This d is tor t ion of the 
dis t r ibut ion functions produces  anti  paral lel  fluxes of the excited particles 
and ground-s ta te  particles. If the differential cross section of the molecules 
changes upon the excitat ion,  the symmetry  between these fluxes will be 
broken in the presence of an inactive buffer gas. Then a net flux of the opti-  
cally excitable gas will appear .  This phenomenon  has been predicted by 
G e l m u k h a n o v  and Shalagin. ~l) 
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It is obvious that the drift of the optically excitable gas is not the only 
effect of the distortion of the distribution function. Besides the drift the 
distortion causes a mixture motion as a whole, heat flux, and some other 
phenomena. Thus, there are a number of light-induced kinetic effects. They 
are being intensively investigated both experimentally 12-t~ and theoreti- 
cally.~9-151 

The aim of the present paper is to consider these effects from the 
viewpoint of nonequilibrium thermodynamics and to obtain the kinetic 
coefficients ssatisfying the Onsager-Casimir reciprocity relations at any 
Knudsen number defined as the ratio 

K B  ~-- 
molecular mean free path 

scale of gas inhomogeneity 

The Onsager-Casimir reciprocity relations are a corollary of the time 
reversibility of microprocesses. But every approach to this problem is 
based on some additional assumptions, which restrict the application of 
the relations. According to the theory of Onsager ~'6~ and Casimir, "71 the 
reciprocity relations can be obtained for an insulated system. However, we 
are going to consider open systems admitting an exchange by energy and 
particles with surroundings. Therefore, the approach of Onsager and 
Casimir is not appropriate. De Groot  and Mazur ~'8~ derived the rela- 
tions for an open subsystem if it is in a local equilibrium. But at inter- 
mediate and large Knudsen numbers the local equilibrium is broken and 
one cannot apply the results of de Groot  and Mazur ~'s~ for the problem in 
question. 

In this case an approach based on the Boltzmann equation and 
boundary condition for the distribution function is most acceptable. The 
approach is worked out and described in refs. 19-23. The properties of the 
Boltzmann equation and boundary condition used in the approach are a 
corollary of the time reversibility of microprocesses. So the basis of the 
kinetic approach is the same as that of Onsager ~16) and CasimirJ 171 But it 
allows one to consider open systems not in local equilibrium. 

For a single gas interacting with a laser radiation the kinetic coef- 
ficients satisfying the Onsager-Casimir relations have been obtained in 
refs. 21 and 22. In the present paper we shall generalize these results for a 
mixture of optically excitable gas and inactive buffer gas. We shall consider 
the fluxes appearing due to the optical distortion of the distribution func- 
tion, namely the flux of the mixture as whole, the diffusion flux, and the 
heat flux. Finally, we shall couple these phenomena with corresponding 
cross effects. 
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2. I N P U T  E Q U A T I O N  

Consider a mixture of optically excitable gas and inactive buffer gas 
being in the field of a laser radiation. Let f~(t, r, F )  be the distribution func- 
tion of species i, where t is the time, r is a vector of the spatial coordinates, 
and F is a set of variables describing a state of molecules. The quantities 
F include three components  of the molecular velocity v and variables 
describing an internal molecular state: the angular momentum,  various 
kinds of excitation, etc. 

For  the sake of simplicity we shall assume that the optically excitable 
gas has only two quantum states: the ground level and an excited one. 
Here, it is convenient to consider molecules with different quantum states 
as two different components,  which can turn into each other. So, we intro- 
duce three distribution functions: for the ground state fg, for the excited 
state fe,  and for the buffer gas fb. 

In the absence of the laser radiation the distribution functions obey 
the system of the ordinary Boltzmann equations, t24 26~ To consider the 
gas-radiat ion interaction we have to supplement the Boltzmann equations 
by corresponding terms. Neglecting the photon  recoil 3 and applying the 
rotating wave approximation,  t27~ we can write the input kinetic equations 
as follows: 

~t + v. ~ + (Rgfg - Ref~) = Qg + XL U(r, v)(fe - - fg)  (2.1) 

Ofe+v Ore O~ "~r -- (Rgfg - Re f,, ) = Qe - XL U(r, v)(f,, - fg )  (2.2) 

~f~ ~f~ 
0---7 + v .-~-r = Qb (2.3) 

where 4 Q; ( i = g ,  e, b) are the ordinary collision integrals, which in the 
general form read ~24) 

Qi = ~ f w ( f ' f .  - f f . )  dF. dr .  dF' (2.4) 
i ' . ,  i . ,  i '  

Here the indices on f correspond to those of their arguments F and index 
i: f .  - f~. (t, r, F . ) ,  f '  - f r  (t, r, F '  ), W is the matrix of the functions 

i i .  t I W= W ,,c.(F , F.--+ F, F.) (2.5) 

3 The average momentum of gas molecules at room temperature is of order 10 -24 kg m see -l, 
while the photon momentum in the visible light spectrum is of order 10 -27 kg m sec ~. 

4 Unless otherwise indicated, the index i runs over g, e, b. 
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determining the number of collisions per unit time and volume in which 
species i' and i . ,  being in states F '  and F , ,  respectively, turn into species 
i and i ,  with states F and F , ,  respectively. The functions corresponding to 
the transitions q ~ b and e ~ b, naturally, are equal to zero. 

These functions, in principle, can be found from the mechanical 
problem of the particle collision. However, the following properties 
of the functions W can be obtained from general arguments (ref. 24, 
Chapter I). Due to the time reversal of the microprocesses in the inter- 
molecular collisions we have 

ii. , 1", --* F 'r, F', T ) (2.6) Wri.(F,,1-,___~ F , F , )  = --".wi'i*(FT'-- , T 

where the index T means the time-revesed state. The second property is a 
consequence of the unitary scattering matrix and reads 

f ii. Z w, , , . ( r ' , r ' . -~r ,r , )dr 'dr ' .  

= Y. f w'?.(r,,,, r . -~r ' ,  r ' . )dr 'dr ' .  (2.7) 
i'., i' 

The quantities Rg and Re on the left-hand side of (2.1) and (2.2) 
describe the relaxation of the level populations to the equilibrium distribu- 
tion due to the spontaneous transitions. They are related by 

Rg [ hCOo (2.8) 

where h is the Dirac constant, ks  is the Boltzmann constant, and To is an 
equilibrium temperature. 

The second terms on the right-hand side of (2.1) and (2.2) describe the 
gas-radiation interaction, where XL is a dimensionless quantity propor- 
tional to the radiation power 

XL = R~_ \ 2h ,] (2.9) 

R• is a polarization relaxation rate, p is the matrix element of the dipole 
transition operator, and Eo is the electric field amplitude of the laser radia- 
tion. The function U is defined as 

0(r) R~_ 
U(r, v) - R2 + (co _ COo _ k- v) 2 (2.10) 
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where Q(r) is a dimensionless function describing the spatial non uniformity 
of the laser radiation, and k is the wave vector of the laser radiation. 

Since we consider the mixture flow in a restricted region, we have to 
determine the boundary condition for  the distribution functions, i.e., to 
relate the distribution function of molecules leaving the wall f +  with the 
distribution function of incident molecules f - .  For a polyatomic gas the 
boundary condition reads ~281 

Iv,, lrl(v.)f+(r,l~)=~q(v'.)lv~,lBi, ,(r,l~'~l~)f~(r,l~')dl ~' (2.11) 
i '  

where Br; is the matrix of the functions determining the number of the 
gas-surface collisions per unit of the time and surface area in which a 
species i '  being in a state F '  turns into a species i with a state F, and q(x) 
is the Heaviside function. 

The functions Bi, ~ can be found from the mechanical problem of the 
gas-surface interaction. But two of their properties can be obtained from 
general arguments. Ku~6er c2s~ has shown that due to the time reversal of 
microprocesses in the gas-surface interaction the scattering kernel obeys 
the reciprocity relation 5 

( e"(r')~,,,(~, r '~r)  
Iv:,[ r/(v~,)exp - kBT,,, J 

=[v,,lq(v,,)exp ~ j B i i , ( r ,  Fr--*F 'r) (2.12) 

where E~(F) is the full energy of molecules of species i, and T,. is the 
temperature of the surface. 

Since all molecules striking the surface are reflected, we obtain the 
second property of the scattering kernel, viz. 

I r/(v,,) B,.,Ar, F'--* F) dF= 1 (2.13) 

Because the kinetic coefficients will be expressed via the moments of 
the distribution functions, it is reasonable to write them down here: 

Number density of species i and number density of the mixture, respec- 
tively: 

ni=ff,.dr, n=~ ni (2.14) 
i 

5 For the sake of simplicity we assume that there are no degenerate energy levels. 
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Bulk velocity of  species i: 

if ui----  f,.vi dF 
ni 

Average molecular velocity of  the mixture: 

~".i nilli 
W 

17 

(2.15) 

(2.16) 

Hydrodynamic velocity of  the mixture: 

~'i rlimiui u (2.17) 
~'i ninTi 

Ordinary heat f lux in the mixture: 

q = ~ f f,. (Eip ' + �89 V~) V, d f  (2.18) 
i 

where m~ is the molecular mass of species i, V~= v ; - u  is the molecular 
velocity in the refernce frame which moves with the local hydrodynamic 
velocity u, and Ei~ n' is the internal molecular energy 

Ei.,(F) I = E,(F) -- ~m~v 7 (2.19) 

We shall need a peculiar thermal f lux in the mixture defined as 

q * = q - ~  Oini(ui-u)  
i 

where 0i is the enthalpy of one molecule of species i, 

o i = l  l E J , . d F + k a T  

(2.20) 

(2.21) 

3. LIN EARIZATION 

Let the mixture of the optically excitable and inactive gases be con- 
tained in a capillary with an arbitrary cross section and sufficiently large 
length to neglect the end effects. Consider a stationary and weak non- 
equilibrium state of the mixture maintained by small constant gradients of 
the pressure, concentration, and temperature denoted as 

a d P  a d C  a dT 
Xp = P dx' Xc = C dx'  X r =  T dx (3.1) 
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respectively, where a is a characteristic diameter size of the capillary. We 
have assumed that the x-coordiante is directed along the axis of the 
capillary, and the concentration of the optically excitable gas is defined as 

C= ng+n~ (3.2) 
ng --~ ne -~- t'l b 

Moreover, the mixture is exposed to a monochromatic laser radiation 
with the wave vector directed along the x axis. The power of the radiation 
is weak, so the perturbations of the equilibrium level populations are small, 
i.e., 

Ing-  noel Ine-  no~ I 
1, ~ 1 (3.3) 

F/Og ?'/Oe 

where nog and noe are the equilibrium number densities. It should be noted 
that when the population perturbation of the excited level is comparable 
with the equilibrium population, i.e., In e -noe  I ~ noe, the state of the system 
becomes strongly nonequilibrium even if the part of these particles in the 
mixture is small, i.e., ne/(n~ + ne) '~ 1. In this case it is impossible to obtain 
the Onsager-Casimir reciprocity relations. 

Because all four sources of the nonequilibrium are small, 

IXpl ~1 ,  IXcI ~1,  IXTI ~1,  IXLI'~ 1 (3.4) 

the distribution functions can be presented as 

f i ( r , F ) ~ f ~  ~i.~T-~hi(r• , 

Ihil ~ 1. i=g,  e (3.5) 

f b ( r , F ) = f O I l + X  x x ] a Xe - a Xc + -a NbXr + hb(r• F )  , 

where 

Ihbl ~ 1 (3.6) 

1 
~=7------~ [ E ~ ( F ) -  0~] 

tCBlo 
(3.7) 
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fo  are the equilibrium distribution functions 

fO=noi~i(To)exp( E~(F)'~ ~;(To) = [ I 
�9 

exp(  Ei(F)~ dF] 

(3.8) 

not is equilibrium number density of species i. 
From the equality 

Ee( r ) - Eg( r ) = h~o o (3.9) 

one can obtain the following relations for the equilibrium distribution func- 
tions and number densities: 

fo noe Cbg(To) ( hogo'] 
fo nog ~,,(To) =exp - k - ~ J  (3.10) 

We assume that in every section of the capillary the gradients and 
power of the radiation are the same. Due to this the perturbation functions 
hi depend only in two diametric coordinates r• = (y, z). 

Substituting (3.5) and (3.6) into (2.1)-(2.3) and taking into account 
(2.8) and (3.10), one can obtain a system of the linearized kinetic equations 
that in matrix form reads 

where 

s  (3.11) 

s  (3.12) 

D,.=6, ,v•  a k =  -R, ,  R,, (3.13) 
~rl' 0 0 

~i ' (h)  2 f 0 t , t = W f , ( h , + h  - h , - - h ) d F ,  dF, dF' (3.14) 
i ' . .  i .  

Here the indices on h mean the same as those on f in expression (2.4). 
The vector of the functions g can be decomposed into four parts 

corresponding to the sources of the nonequilibrium 

g = g(mXe + g(CiXc + g( TIXT .4_ g(C )XL (3.15) 
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(i) (!) v,. (3.16) g(p)= v, , g(C)= v_j_ , g(r)= - - a  
a o 

\/U(r• u  e - -  1)) 
v)(Re/Rg -- 1 ) g(L) = [ U(r• (3.17) 

0 

Substituting (3.5) and (3.6) into (2.11) and taking into account (2.12) 
and (2.13), one obtains a linearized boundary condition that in matrix 
form reads 

h +(F )= . ~h - (F  ') (3.18) 

where the elements of the operator matrix .~ are defined as 

1 f .4,,,h F (F' ) - Iv,, I f  ~ (F) ~l(v',,) Ivl, I fO,(F,) h F (F' ) B,.t(F' ~ F) dF' 

(3.19) 

Because of the linearity of Eq. (3.11 ) and boundary condition (3.18) the 
vector of the perturbations h can be presented as the linear combination 

h = hte)Xe + h~C)Xc + h{T)XT+ h(L)XL (3.20) 

where every vector h I") is determined only by the corresponding vector of 
the source functions gU,), i.e., 

s c') = g("), n = P, C, T, L (3.21) 

Let us introduce the time-reversal operator acting on a function vector 
q)(r• F), 

T~0(r• F) -= q~(r• F r) (3.22) 

and three scalar products 

(q~, r  f f ~  q~i(r~, F)  r177 F) dF (3.23) 
i 

((q~' ~)) = Izk (~o, ~) dr• (3.24) 

(qhO)B=~ f q ( v . ) v , , f ~ 1 7 7 1 7 7  (3.25) 
i 
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where _r• is the cross section of the capillary. The last product is defined 
on the surface. 

Applying (2.6) and (2.7), one can obtain the well-known relation ('-4-261 

( Tlcp, ff ) = ( Tlf f  , qg ) 

and as its consequence the following one: 

((TXqg, f f ) ) =  ((Ti f f ,  r 

Applying the reciprocity of the scattering kernel 

(3.26) 

(3.27) 

(2.12) and the 
normalization (2.13), we easily obtain the following relation (ref. 26, 
Chapter 4): 

(i~q~-,/iff - )B = (if'ff - ,  A~o- )B (3.28) 

It can be seen that 

((7~/5r ff))= ((~/Sff, r  ~0si (Tv,,~o, ff) dl (3.29) 

where the Gauss theorem has been used to replace the integral over the 
cross section by the integral over the contour. Applying (3.18) and (3.28), 
it can be proved that the last term on the right-hand side of Eq. (3.29) is 
equal to zero 

ff)= +, +, 

= (J~0 - ,  7~ff - )B - (Jff - ,  T~0 - )B = 0 (3.30) 

From the relations (2.8) and (3.10) one can obtain the relation 

((7~k~o, ff))= ((ib~ff, ~o)) (3.31) 

Finally, taking into account (3.27), (3.29) with (3.30), and (3.31) for 
the matrix operator s defined by (3.12), we have 

((7~s ff))= ((Ts ~o)) (3.32) 

The linearized expressions of the moments are obtained substituting 
(3.5) and (3.6) into (2.15), (2.16), and (2.20): 

l' 
noiUxi = J f ~  i dF  (3.33) 

noWx = (v,., h) (3.34) 

q* = k8 To(vx& h) (3.35) 
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Substituting the decomposition (3.20) into (3.33)-(3.35), we obtain the 
decomposition of the moments 

l l o i b l x i : Z  ~ ,~(n) v,/ I'OiL'l x i  "~ n ,  
n 

n o W v = 2  n o W l n ) ~ "  

/t 

q.* = Z q*~")X,,, 
n 

/ , , ( n ) -  [" fOb(n) , ,  Oi"xi - J . '  t "i  v.~i dl" (3.36) 

n , , , , , ) _  t,, h, ,))  (3.37) 0 rVx - -  ~Ux ,  

q*~")-ksTo(vxg,. - h u') ) (3.38) 

4. E N T R O P Y  P R O D U C T I O N  

Before we define the thermodynamic fluxes and the kinetic coefficients 
let us obtain an expression of the entropy production in the system, 
because we have to verify that the thermodynamic fluxes, which will be 
introduced below, are related to the entropy production as well as to the 
conventional ones. 

The entropy of the gas per unity of the capillary length is defined as 

e S=~i f fz J:.In~dFdr• (4.1) 

In the definition the Boltzmann constant is omitted. 
In the problem in question there are three mechanisms of entropy 

production: (i) intermolecular collisions, (ii) spontaneous transitions g,-~ e, 
and (iii)gas-surface interaction. Let us denote the corresponding entropy 
productions per unity of capillary length by trco,, Gt, and aw, respectively. 

As is well known/24 26) the entropy production due to the first 
mechanism is a nonnegative value defined by the expression 

aco.= -~. f f_~ Q~ln f ~ d F d r •  = - ( ( i h ,  h))>~O (4.2) 

The entropy production due to the second mechanism is calculated as 

(aZ) ln f, drdr .  (4.3) 

The change of the distribution functions due to the spontaneous transitions 
is equal to 

Ot ~st \ Ot ,/st \ Ot /st = 0 (4 .4 )  
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Then, after the linearization of (4.3) using (2.8), (3.10) and taking into 
account the particle conservation law we have 

ast=fl z Rgf~ h))>~O (4.5) 
3. 

The entropy production due to the gas-surface interaction can be 
found as the entropy flux from the surface. This total flux is equal to the 
entropy production on the surface because in the considered problem there 
is no entropy influx through the lateral wall of the capillary. Thus, we have 

e 

aw=~ f ~ozl v,,filn-fidFdl (4.6) 

After the linearization and applying the Gauss theorem to replace the 
integral over the contour by the integral over the cross section, we obtain 

aw=�89 f ~aziv.f~ drd/=((15h, h))>~O (4.7) 

Cercignani (ref. 26, Chapter 3) has shown that a .  is a nonnegative value. 
The final expression of the entropy production reads 

a=aw+a,=+aco,,=((bh, h)+((kh, h))-((ih, h))=((s (4.8) 

Taking into consideration Eq. (.3.11 ), we obtain 

a = ((g, h)) (4.9) 

5. DEFINITION OF THE KINETIC COEFFICIENTS 

In conventional thermodynamics (~6-~81 the kinetic coefficients A.,. are 
defined as coefficients of proportionality between thermodynamic fluxes J .  
and thermodynamic forces X.,, 

e,,=~ A,,.,x,. (5.1) 
I l l  

Here we adopt the same definition. Under some given choice of the 
thermodynamic fluxes and forces the kinetic coefficients A.., satisfy the 
Onsager-Casimir reciprocity relations 

A ..... =e,,e.,A .... (5.2) 

where ~,,=-I-1, depending on the parity of the corresponding thermo- 
dynamic flux J . .  We assume e,, = 1 if the flux J,, changes its own sign at the 
time reversal, otherwise e,, = - 1 .  
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But how do we choose the thermodynamic fluxes correctly ? Onsager 1161 
and Casimir "7) introduced the thermodynamic fluxes as time derivatives of 
state variables of the system and the thermodynamic forces as derivatives 
of the entropy production with respect to these variables. But the principal 
difference between their approach and the present one is that they con- 
sidered a closed and hence nonstationary system, but here we consider an 
open and stationary system, i.e., all time derivatives are equal to zero. 
Thus, we have to introduce the thermodynamic flux in another way. 

It can be shown (~s' 24) that if the fluxes and forces are introduced in the 
Onsager-Casimir way the entropy production in the system is expressed as 
the sum 

a = ~  J~Xn (5.3) 
n 

Thus, it can be supposed that if we introduce the thermodynamic fluxes 
and forces so as to satisfy (5.3), the kinetic coefficient defined by (5.1) will 
obey the reciprocity relations (5.2). Here it must be emphasized that in 
deriving the kinetic coefficients via the expression of the entropy produc- 
tion (5.3) one cannot automatically write down the Onsager-Casimir 
reciprocity relations (5.2) for the considered problem, because in this case 
the suppositions of conventional thermodynamics ~6-~8) are violated. The 
entropy production expression (5.3) is used only to define the thermo- 
dynamic fuxes and kinetic coefficients. Then, we have to prove the 
reciprocity relations (5.2) applying Eq. (3.32). 

The quantities Xe, Xc, Xr, and X L, determine the amount of deviation 
from equilibrium and it is logical to assume them as the thermodynamic 
forces. Let introduce the thermodynamic fluxes as follows: 

J,, = ((g("), h)) (5.4) 

Taking into account expressions (3.15) and (4.9), one can see that such 
definition of the fluxes and forces provides the relation (5.3). Substituting 
(3.20) into (5.4) and comparing with (5.1), it can be seen that the kinetic 
coefficients are defined by 

A ..... = ((gl,,), hi,,))) (5.5) 

Let us write down the explicit expressions of the thermodynamic fluxes 
applying the expressions of g("), (3.16) and (3.17), and the expressions of 
the moments (3.33)-(3.35): 

jp  = ((gO-p), h ) )=  __1 ((v,., h)) 
a 

= - a  (vx,/7) d r i  = - a  now.,, dr.  (5.6) 
• • 

822/78/1-2-29 



426 Sharipov 

Jc = ((gCCl, h)) 

= _ -  (nogUxg+Floeuxe--nobu.~b)dr• 
a j_ 

1 
I r  Fl~ (1 C)uxb] dr• (5.7) 

a . 

where Uxge is the bulk velocity of the optically excitable gas defined as 

FlogUxg "-[- FloeUxe 
ux~e  = " ( 5 . 8 )  

HOg "[- Floe 

1 ((vxS, h))= 1 Iz J r = ( ( g ( r ) ' h ) ) =  - a  - a  • (vxg, h) dr• 

- aksTo  , q * d r L  (5.9) 

JL= ( (gCL), h ) ) =  I I z l  U(r • v) 

x[f~176 
\Re ]J 

= I  Is U(r• v)(f~176177 (5.10) 
.k 

Thus, it can be seen that the thermodynamic flux Je conjugated with 
the pressure gradient X e is equal to the average molecular flow rate. The 
thermodynamic flux Jc conjugated with the concentration gradient X c  is 
equal to the diffusion flux of the optically excitable gas. The thermo- 
dynamic flux J r  conjugated with the temperatur gradient is equal to the 
peculiar (not ordinary) heat flux through the cross section of the capillary. 
The thermodynamic flux JL conjugated with the laser radiation XL is equal 
to some integral value characterizing the deviation of the level populations 
from the equilibrium distribution. 

The explicit expression of any kinetic coefficient A,m can be easily 
obtained if the quantities u,.i, wx, q*, and perturbation function h in the 
expression of the thermodynamic flux J,, are replaced by �9 t") w cm) "xi , ...~ , q_,U,,I 
[see Eqs. (3.36)-(3.38)], and h (m~ [see (3.20)], respectively. 
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The parities e, can be found via the functions g("), which have the 
property 

if'gl")(r, F )  = ~,, gl")(r, F )  (5.11) 

From (3.16) we obtain 

e e = e c = e r =  - 1  (5.12) 

From (3.17), taking into account that both velocity v and wave vector k in 
the expression of U(r.L, v), (2.10), change their signs at the time reversal, 
we have 

~L = 1 (5.13) 

This is in consistent with the physical definition of the parities e, given 
above: it is obvious that the fluxes Je,  Jc,  and J r  do not change their signs 
at the time reversal, while the flux J/. changes its own sign. This is easily 
explained: the time reversal implies the change of the wave spread direc- 
tion. Due to this the Bennett dip and peak will appear on the other half of 
the distribution function. As a result all light-induced fluxes will change 
direction. 

6. PROOF OF THE RECIPROCITY RELATIONS 

Now we shall prove that kinetic coefficients (5.5) introduced by anal- 
ogy with conventional nonequilibrium thermodynamics (16-~8"z4) satisfy the 
reciprocity relations (5.2). Taking into consideration (3.21), (3.32), and 
(5.11) we have 

A.m = ((g,,, h.,) ) =  ~.((~g,,, hm))= ~ , , ( ( ~ s  h . . ) )  

= ~ , , ( ( f L h . , ,  h,,)) = ~,,((~g.,, h . ) )  = ~:m((gm,  h . ) )  = ~:. ,Am,,  

For the considered problem we have six reciprocity relations 

Aec  = Acp, Aer  = A t? ,  Arc  = A c t  

ApL = --AL~, AcL = --ALe,  ArL = - -ALr  

Here we have taken into account the parities (5.12) and (5.13). 

QED 

(6.1) 

(6.2) 

(6.3) 

7. COUPLINGS BETWEEN CROSS EFFECTS 

The first three reciprocity relations (6.2) and the corresponding 
couplings between the cross effects were obtained earlier ~s' ~9.z3) and are 
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not considered here. The second three reciprocity relations (6.3) give new 
couplings that will be written below. 

The average molecular flow rate of the mixture caused by the laser 
radiation A eL is coupled with the distortion of the equilibrium level 
populations caused by the pressure gradient ALe, 

l i t  n~ ~ I r  U(rj_, o o (P)  h e )dFdr .  (7.1) - = v)(f~ -f~)(hg re) 
0 l l 

The diffusion flux caused by the radiation A C L  is related to the distortion 
of the level populations caused by the concentration gradient Atc,  

1 ~2: (L) 
- -  - -  C ) / ' / x b  ) dr• a �9 r l o ( C t t x g  e - -  (1 ILl 

I fs U ( r •  o o i c )  ~c) = v)( f~-fg) (hg  -h~ )dFdr• 
i 

(7.2) 

Finally, the heat flux caused by the radiation ArL is related to the distor- 
tion of the level populations caused by the temperature gradient Amr, 

1 fz q, , t ,  d r •  U(r• v)(f  ~ 1 7 7  (7.3) 
ak-BTo • sx ' -g'"-g 

8. S U M M A R Y  

Starting from the Boltzmann equation supplemented by the terms 
describing the gas-radiation interaction and the boundary condition for the 
distribution function, we have established the Onsager-Casimir reciprocity 
relations at any Knudsen number. The couplings relating the light-induced 
kinetic effects with corresponding cross phenomena have been obtained. 
Unlike the classical treatment of nonequilibrium thermodynamics by de 
Groot and Mazur/18) the approach developed here allows us to apply the 
reciprocity relations to a wider range of irreversible phenomena, namely, 
phenomena arising in systems not in local equilibrium. 
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